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Abstract. The effectiveness of Chisholm’s new rational approximation scheme for functions 
of two variables is examined for applications to problems in the field of critical phenomena. 
The examples chosen are double power series expansions for the high-temperature suscep- 
tibility xo(a, T) where the additional variable a is (i) the degree of anisotropy in the aniso- 
tropic Heisenberg model, (ii) the relative strength of second-neighbour interactions in king 
model systems and (iii) the relative strength of pair and three-spin interactions in a two- 
dimensional pair-triplet Ising model. In case (i) additional support is obtained for the prin- 
ciple of universality in relation to the discontinuous increase in the value of the exponent ‘J 

at the suspected symmetry breaking point q = 1 for all quantal cases. 

1. Introduction 

The previous paper (Roberts et al 1975, hereafter referred to as 1) has examined the 
performance of Canterbury approximants (CA) on a selection of known but simple 
two-variable functions, and has established that Chisholm’s recent two-variable approxi- 
mation scheme (Chisholm 1973, Chisholm and McEwan 1974, Graves-Morris et al 
1974, Hughes-Jones 1973 preprint) could be a successful technique in determining 
numerical estimates of analytic features from truncated double power series. The 
functions that have been tested in this way are obvious generalizations of a variety of 
single-variable functions chosen by Hunter and Baker (1973) in a recent survey of the 
efficiency of the well known Pad6 approximant scheme, which is widely used in the field 
of critical phenomena to determine the location of critical points and the values of the 
much studied critical exponents (for reviews of critical phenomena see Fisher 1967, 
Gaunt and Guttmann 1974, Wood 1974). The purpose of the present publication is in 
part to examine Chisholm’s new scheme of rational approximation in action upon a 
selection of problems in critical phenomena. For such applications there will invariably 
be a much smaller number of terms available than in the orders of the expansions which 
were employed in the previous paper. 

In many problems in critical phenomena the original expansion of the thermo- 
dynamic potential is naturally in terms of two or more variables ; examples are when the 
variables are thermodynamic intensities such as temperature and magnetic field, or 
cases where the original set of microscopic coupling constants in the Hamiltonian leads 
to a set of reduced temperature variables. In our present applications of Canterbury 
approximants we choose the following examples from the latter type of expansions. 

(i) High-temperature expansions of the susceptibility ,yo in zero field for the general 
spin anisotropic Heisenberg model, which were calculated recently by Wood and 
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Dalton (1972). These expansions are triple power series in terms of the spin variable 
X = S ( S +  I), the inverse temperature T- '  and the longitudinal anisotropy parameter r]t. 

(ii) High-temperature expansions of xo for Ising model lattices in which next- 
nearest-neighbour (NNN) interactions are included in the Hamiltonian. These are double 
power series in the variables J J k T  and the relative strengths of the nearest-neighbour 
(NN) ( J 1 )  and NNN ( J 2 )  coupling constants, a = J , / J ,  (Dalton and Wood 1969). 

(iii) High-temperature expansions of xo for the two-dimensional triangular lattice 
triplet Ising model which is a double power series in the variables u2 = tanh J 2 / k T  and 
li3 = tanh J 3 / k T ,  where J 2  and J 3  are the two-spin and three-spin coupling constants 
(Wood and Grf i ths  1972, 1973, 1974a, Grf i ths  and Wood 1973, Watts 1974, Baxter 
and Wu 1974, Baxter 1974, Baxter et a1 1975). 

All the above susceptibility functions may be expressed as a double power series in 
the form 

where P,(z,) is a polynomial of degree 1 ; hence the coefficient matrix C(c,,,) is triangular. 
For such 'triangular' expansions the Canterbury approximants do not exist, and it is 
necessary to effect some transformation of the variables, thus filling the transformed 
coefficient matrix. Following the procedure outlined in I we choose the origin-preserving 
rotation 

(2) 
21 = x + y  

2 2  = x - y  

for this purpose. In the three examples above the variable z 2  corresponds to (i) q, (ii) a 
and (iii) u2/u3 = x (Wood and GrifZths 1973). In the calculation of the critical lines 
T,(r]), T,(a) and T , ( J 3 / J 2 )  and the corresponding exponents y(r] ) ,  y(a) and y ( J 3 / J 2 )  using 
Canterbury approximants, we follow the procedure of I (see also Wood and Grf i ths  
1974b) in obtaining the m ( n ,  m) to the logarithmic derivatives of the susceptibility 
expansions. 

A secondary purpose of this paper is to present an overall study of the power series 
in (i), which are based upon the general spin N-site lattice Hamiltonian 

N 

where the initial summation is over nearest-neighbour pairs, and the measure of the 
longitudinal anisotropy is the parameter r]  = J L / J a ;  hence the extreme points q = 0 
and q = 1 correspond to the Ising model and isotropic Heisenberg models respectively. 
Interest in the S = 4 case and the analogy with the quantum lattice gas (Matsubara and 
Matsuda 1956) was originally stimulated by Fisher (1966) who conjectured that the 
susceptibility exponent y would be fixed at its suspected king model value y(0)  = 5 
(three-dimensional lattices) on the interval 0 < q < 1, and change discontinuously at 
r]  = 1 to its value for the three-dimensional Heisenberg model. There is no consensus on 
the value of y(1): Ritchie and Fisher (1972) (see also Bowers and Woolf 1969) find that 
y = 1.375:::;: represents y(1) for all three-dimensional lattices and spin; however, the 
rival claim of y = 1.405kO-02 for the infinite spin case has been given by Ferrer et a1 
(1971) (for a discussion of y ( 1 )  see Rushbrooke et a1 1974). 
t There are two printing errors in b&) of Wood and Dalton (1972). The coefficients of pSsX4q5 and psaX4q6 
should read - 216760320, and -92897280 respectively. 
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Evidence for the independence of y on the anisotropy q is important in its support of 
the principle of smoothness, which was stated in general terms by Griffiths (1970) and 
later incorporated into the more general principle of universality (Kadanoff 1973, 
Watson 1969a, b, Betts er aI 1971, Ferrer and Wortis 1972). Previous studies of the ex- 
treme quantum case S = 4 (Dalton and Wood 1967, Jou and Chen 1973) have yielded 
results which are consistent with such a discontinuity in y, but the strongest evidence so 
far has been obtained for the classical Heisenberg model (s = 00) by Jasnow and Wortis 
(1968), who also distinguished between the coupling constants for the x-x and y-y spin- 
spin terms in (3). In terms of our longitudinal parameter these authors obtained the 
following result to within confidence limits of 1 or 2 %. 

= 0 0.2 0.4 0.6 0.8 0.9 1.0 

i’ = 1.23 1.23 1.23 1.24 1.19 1.19 1.38. 
(4) 

Following the derivation of the general spin high-temperature series for this model 
(Wood and Dalton 1972), which have been expressed in an algebraic form valid for an 
arbitrary lattice structure, it is now possible to examine this model at a variety of spin 
values from which we have obtained good evidence for both the initial invariance of y ,  
and the discontinuous change at q = 1 to be valid for all the quantal cases. 

2. The anisotropic Heisenberg model with general spin 

Adopting the variable z2 in (1) as the anisotropy parameter the polynomials P,(q) are 
known through to I = 7 for the case s = 4 and through to 1 = 6 for the general spin case. 
In table 1 we compare Jou and Chen’s Pad6 approximant (PA) analysis of the longer 
s = 4 series for x o  with an analysis using Canterbury approximants, which of course 

Table 1. A comparison of Canterbury approximants and Pade approximant results for the 
predictions of the critical point function K,(q)  for the s = 4 anisotropic Heisenberg model 
on the BCC (1) and FCC (1) lattices. Listed are the deviations from the overall Pade estimates 
in units of The values of K,(1) are taken from Baker et al(1967). 

FCC(1) BCC(1) FCC(1) BCC( l )  FCC(I )  BCC(1) FCC(1) BCC(1) FCC(1) BCC(1) 

0 0.204 0.315 2 5 0 3 -2  - 7  3 f  
0.1 0.204 0,315 2 6 1 3 - 2  - 6  3 
0.2 0.205 0.316 1 6 0 4 -2 -6  3 
0.3 0,206 0.318 1 6 1 4 -2 - 5  4 
0.4 0.207 0.321 2 6 2 4 1 - 4  
0.5 0,209 0.325 2 6 3 5 3 -2  3 
0.6 0.212 0.330 2 1 3 1 - 1  0 4 
0.7 0.216 0.337 2 9 5 8 -6 t  4 4 
0.8 0.222 0.347 1 7 6 8 -12 13 2 
0.9 0.231 0.364 0 0 1 3 -20 26 0 

- 

1.0 0.249 0.396 -12 -18 4 -14 -39 36 -14 

t CA diverges away rapidly beyond this point. 
$ The root appears split into two branches throughout the range. 
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yield one complete representation of xo(K,  r ] )  and T,(r]) ( K  = Jll/kT) for each approxi- 
mant (see Wood and Griffiths 1974). The lattices represented in table 1 are the nearest- 
neighbour body-centred cubic BCC( 1) and face-centred cubic FCC( 1) lattices (see Dalton 
and Wood 1969). The confidence limits on the Pade approximant critical points 
J ' l / k T ,  = K, are such that the results are expected to be correct to the number of figures 
quoted, and for each CA we list the deviation from these results in units of Quite 
clearly the CA listed give an excellent representation of the function xo(K,  r ] )  over the 
very wide interval 0 < q 5 0.9 for both lattices ; the representations appear to deteriorate 
beyond q = 0.9. It is our experience that such a good fit with this number of terms is 
over a much wider range than might normally be expected for such complex functions. 
The corresponding comparison for the numerical estimates of the critical exponent y is 
given in table 2. For these s = models the confidence limits of the overall estimates in 
the region q + 1 deteriorate ; however, the evidence of a discontinuous change in y is 
much stronger in the overall Pade results than could be obtained from the corresponding 
CA ; this is to be expected in view of the wide range in Y/ needed for a good fit near rI = 1. 

Table 2. The unbiased estimates ofy(q) obtained from the diagonal Canterbury approximants 
in table 1 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

FCC(1)  
1.25 kO.01 
1.25k0.01 
1.25 kO.01 
1.24 k 0.02 
1.24 k 0.02 
1.24k0.02 
1.23 k0.03 
1.23 0.03 
1.23 i 0 . 0 3  
1.24 k 0.03 
1,38+0.03 

BCC ( 1 )  
1.24 k 0.02 
1,24 k 0.02 
1.24 k 0.03 
1.23 0.03 
1.23 k0.03 
1.22k0.04 
1.21 kO.04 
1.21 k0.04 
1.21 kO.04 
1.22 k 0.04 
1.38k0.04 

FCC(1)  BCC(1) FCC(1)  BCC (1)  
1.29 1.36 1.26 1.31 
1.29 1.36 1.26 1.31 
1.29 1.35 1.26 1.31 
1.28 1.35 1.26 1.31 
1.30 1.34 1.27 1.30 
1.28 1.34 1.27 1.30 
1.29 1.35 1.28 1.30 
1.29 1.47 1.29 1.30 
1.31 1.34 1.29 1.30 
1.32 1.33 1.28 1.30 
1.35 1.33 1.25 1.30 

t These results are reported by Jou and Chen (1973): the recent estimates of y(0) (Domb 1974) 
confirm the value of 2 (for all three-dimensional lattices) to within error bounds of 10- 3,  

What the CA do very clearly support however is an invariance in y(q)  as r]  increases away 
from the Ising model limit r]  = 0, thus providing additional numerical support to the 
principle of universality (Kadanoff 1973, Griffiths 1970, Kadanoff and Wegner 1971, 
Wilson 1971, Ferrer and Wortis 1972). 

The generalized lattice form of the expansion of Wood and Dalton (1972) and Jou 
and Chen (1973) enables these series to be developed for the s = 3 equivalent-neighbour 
(EN) model lattices (BCC (1,2) etc) in which both NN and NNN interactions are equal. This 
effectively defines a new lattice of higher coordination number (Dalton and Wood 1969, 
Bowers and Woolf 1969). The CA (2,2) and CA (3 ,3)  for the BCC (1,2) and FCC (1,2) aniso- 
tropic Heisenberg model lattices are listed in table 3. The CA behave remarkably well 
giving a good representation of xo(K,  q) over the whole range; the confidence limit in 
the CA (3, 3) critical point varies from +% to 4% between the points r]  = 0 and r]  = 1 
respectively, and the CA (3, 3) for the BCC (1,2) series (q  = 14) is beginning to evidence a 
rapid change in y near q = 1, as well as very clearly suggesting that y is invariant to 
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Table 3. The unbiased estimates of the critical point K, (q )  and susceptibility exponent y 
obtained from the diagonal Canterbury approximants for the equivalent-neighbour model 
lattices FCC ( I ,  2) and BCC (1.2); the independent estimates of K,(O) are respectively 0.1291 
and 0,1720 and of &(I ) ,  0,1474 and 0.203 

CA (2.2) CA (3. 3) 
.rl 

K A d  it(d Kc(?) Y ( 9 )  

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

FCC (1,2) 
0.1286 
0.1286 
0.1288 
0.1291 
0.1296 
0.1304 
0.1315 
0.1329 
0.1 346 
0.1366 
0.1390 

BCC (1,2) FCC ( 1,2) BCC ( I ,  2) 
0,1719 1.21 1.25 
0,1721 1.21 1.25 
0,1726 1.21 1.25 
0.1736 1.21 1.25 
0.1751 1.20 1.26 
0.1773 1.20 1.26 
0.1805 1.20 1.21 
0,1850 1.20 1.28 
0.1917 1.22 1.28 
0.2015 1.23 1.27 
0.2161 1.24 1.24 

FCC(l,2) 
0.1286 
0.1286 
0.1288 
0.1291 
0.1297 
0.1305 
0.1316 
0.1331 
0,1349 
0.1372 
0.1398 

BCC (1.2) FCC (1, 2) 
0,1723 1.21 
0,1724 1.21 
0,1729 1.21 
0,1737 1.21 
0,1749 1.20 
0.1766 1.20 
0.1789 1.20 
0.1819 1.21 
0,1856 1.22 
0.1900 1.23 
0.1953 1.25 

BCC (1, 2) 
1.26 
1.26 
1.26 
1.26 
1.26 
1.27 
1.27 
1.28 
1.29 
1.31 
1 34 

q( # 1). It is a simple matter to establish that lim q + 0 dK,(q)/dq = 0 for all lattices (Jou 
and Chen 1973); thus we see that the Canterbury approximants are also very clearly 
reproducing this qualitative detail in the function K,(q). 

In tables 2 and 3 the discrepancies shown by the CA (2,2) and CA (3 ,3 )  in the estimates 
of y between the two lattices are in our view a result of different convergence errors at 
these low orders, and do not represent a change in the exponent between the two lattices. 
The errors in a CA analysis are very likely to be dependent upon the magnitude of the 
singularity ; this follows from the empirical relationship between the rotation of the 
axes and the size of the error which was discussed in I. Thus with the rotation used in 
tables 1 and 2 the errors for the FCC lattice should be less than those of the BCC lattice at 
Y/ = 0, with the relative error decreasing towards q = 1. This appears to be the case if 
y = 2, q # 1. Similar effects apply to table 3, although here the error differences might be 
expected to be smaller ; thus differences of this type might occur more frequently in 
using a CA analysis than one encounters in a corresponding Pade analysis. 

The very good performance of the Canterbury approximants for the s = 4 series 
expansions in tables 1, 2 and 3 rapidly deteriorates for the corresponding series of the 
higher-spin models ; typically for the cases s = 1 and the range over which a good 
representation of zo (K ,  q )  is obtained is much reduced, and individual CA often fail to 
approximate any physical singularities over the whole range of q. These general spin 
expansions contain one less term than the s = case; however, the Pade approximants 
appear to yield a very accurate representation of zo(K)  at discrete intervals of q, indi- 
cating confidence limits on K,(q) which vary from 0.1 % to 0.5 % from the end-points 
q = 0 and q = 1 respectively. These numerical values are of little interest and are not 
listed here ; however, the behaviour of y ( q )  is of interest and has not previously been 
examined for the general spin cases. In table 4 we record the behaviour of y ( q )  as given 
by the Pad6 approximants to the logarithmic derivative of x o  for the BCC (1) lattice (the 
FCC (1) results are essentially of the same behaviour). If one accepts the Ising model 
value of y(0) = 1.25 then the Pade approximants [2,3] and [3,2] are approximating y to 
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Table 4. The Pade approximant representation of the behaviour of y ( q )  for the cases s = 1 
and s = 3- on the BCC ( 1 )  lattice. 

v s =  1 S = ;  

~ 3 ~ 2 1  [2,31 [ 3 ~ 1  ~ ~ 3 1  
0 1.22 1.23 1.20 1.21 
0.1 1.22 1.22 1.20 1.21 
0.2 1.22 1.22 1.20 1.20 
0.3 1.22 1.22 1.20 1.21 
0.4 1.21 1.22 1.20 1.21 
0.5 1.21 1.21 1.20 1.20 
0.6 1.21 1.21 1.20 1.20 
0.7 1.21 1.22 1.20 1.20 
0.8 1.23 1.24 1.22 1.23 
0.9 1.27 1.29 1.27 1.27 
1.0 1.39 1.39 1.38 1.38 

within 2 4 %  at q = 0, and the evidence for the invariance of y(q)  (q # 1) and the dis- 
continuous jump at q = 1 to y(1) = 1.38k0.01 is very good. Combining these results 
with the previous work of Jasnow and Wortis (1968) probably represents the best non- 
trivial example of the association between a break in the symmetry of the interaction 
Hamiltonian and a discontinuous change in the critical exponents, originally proposed 
by Griffiths (1970). 

A further problem of interest concerns the critical behaviour of two-dimensional 
anisotropic Heisenberg models, where there is controversy over the question of the 
existence of a phase transition in two-dimensional isotropic Heisenberg model systems 
(Stanley and Kaplan 1966, Mermin and Wagner 1966, Wegner 1971, Yamaji and Kondo 
1973, Kosterlitz and Thouless 1973, Kosterlitz 1974, Camp and VanDyke 1975, 
Bloembergen 1975). The present series expansions allow one to examine the approach 
of T,(q) to T,(l) for a two-dimensional network using both Pad6 and Canterbury approxi- 
mants for any spin value ; thus, assuming that T,(q) is continuous in the region q + 1, 
additional information on this question can be obtained. For both the square (SQ) and 
triangular lattices the Pad6 approximants fail to give a representation of a physical 
singularity beyond q 1: 0.8 (Jou and Chen 1973) for the s = $ model. By comparison 
the Canterbury approximants yield a representation of xo(K, q) which evidences the 
existence of a critical point over the whole range q = 0, 1. The CA (2, 2) and CA (3, 2) 
estimates of T,(q)/kJll are compared with the overall Pade approximant results of Jou 
and Chen in figure 1 for the triangular lattice. Similar calculations using the CA (2,2) and 
CA (3,3) for the triangular lattice with equivalent NN and NNN interactions very clearly 
indicate a continuous line of critical points which intersect the q = 1 axis ; the results are 

q = o  0.1 0.2 0.3 0.4 

CA (2, 2) K ,  = 0.2287 0.2287 0.2287 0,2288 0.2293 

CA (3, 3) K, = 0.2271 0.2272 0.2275 0.2281 0.2290 
( 5 )  

Y/ = 0.5 0.6 0.7 0.8 0.9 1 .o 
CA (2, 2) K ,  = 0.2302 0.2318 0.2341 0.2371 0.2410 0.2458 

CA (3, 3) K ,  = 0.2306 0.2327 0.2357 0.2395 0-2443 0.2501 
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i I 
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0 2  0.4 0.6 0.8 

ll 

0 

Figure 1. A comparison of the predictions for the existence of a critical point covering the 
interval 0 < q < 1 for the two-dimensional triangular lattice obtained from Pade and Canter- 
bury approximants. x : CA (3.2); 0 :  ca(2,2);  and *: PA results from Jou and Chen (1973). 

A corresponding analysis of the general spin series using Pade approximants sup- 
ports the existence of a phase transition for two-dimensional Heisenberg models; a 
summary of the calculations for the S Q  lattice is given in table 5.  The evidence for 

Table 5. A two-dimensional (SQ lattice) Heisenberg model for cases s = 1, 4 and 2. The 
overall Pade approximant results for the critical point K,(q)  are listed together with an 
unbiased estimate of y ( q )  taken from the Pade approximant which yields the closest fit to 
Kc(v). 

4 s = l  s = ;  s = 2  

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

K&l) 
0,293 
0.294 
0.296 
0.299 
0.305 
0.313+0.001 
0.323 fO.001 
0.338 + 0.001 
0.360 f 0@01 
0.40 f 0.02 
0.50+0.05 

Y(I)  
1.79 
1.78 
1.76 
1.71 
1.66 
1.62 
1.60 
1.64 
1.76 
2.06 
3.20 

K , ( d  
0.151 
0.151 
0.152 
0.154 
0.156 
0.1 58 + 0.001 
0.165 +0.001 
0.170 
0.180 + 0~001 
0.190 + 0.01 
0.24 f 0.01 

Y ( d  
1.76 
1.76 
1.74 
1.70 
1.66 
1.61 
1.59 
1.62 
1.72 
2.01 
3.44 

K S v )  Y ( 4  
0~0930~0~0001  1.74 
0.0931 +O~OOOl 1.74 
0,0936 O.OOO1 1.72 
0~0944+0.OOO1 1.69 
0~0956fO~OOO1 1.66 
0~0972+0~0002 1.61 
OQ990+0~001 1.58 
0~104+0~001 1.60 
0.109f 0001 1.70 
0.117f0.002 1.98 
0.14+0.02 3.51 
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universality in relation to y(q) is also good, with an indication of a jump in the value of y 
at q = 1; the data suggest y = 3.5k0.5 (assuming y to be spin invariant). Recently 
Yamaji and Kondo (1973) have provided two additional terms to the susceptibility 
expansion of the two-dimensional isotropic models. In a Pade approximant analysis 
of the effect of the extra terms these authors find that many off-diagonal approximants 
possess no positive real singularity, and suggest that the susceptibility is finite for all 
temperatures. However their additional diagonal and para-diagonal approximants still 
yield real singularities in xo which are consistent with the lower-order approximants 
corresponding to the order of the approximants in table 5. 

3. Further applications of Chisholm approximants 

Further examples of double power series in critical phenomena are the high-temperature 
expansions of Dalton and Wood (1969) for Ising model (s = i) systems which include 
interactions over NNN distances ; thus the interaction Hamiltonian is given by 

N 

X = - J  1 aiaj-J2 a,al-mH ui 
N N  N N N  i =  1 

where the relative strengths of the NN and NNN interactions can be measured by the para- 
meter a = J2/J1 (see § 1). The polynomials P,(a) in (1) are known through to I = 6 for 
a variety of common lattices. On the whole a numerical analysis of the power series of 
the function xo(a, K) (K = Jl/kT) using CA yields much inferior results to the previous 
expansions in 5 2, and to parallel PA calculations. 

The n-variable rational approximation scheme of Chisholm and McEwan (1974) 
possesses the important projective property that if any k-variables are set to zero, the 
approximants in the N - k variables formed from the corresponding power series are 
obtained. Thus in the two-variable case the CA (n, m) to a function F(zl, z2 )  reduce to the 
[n,  m] Pade approximants of F(zl, 0) and F(0,  z 2 )  when z2 = 0 and z1 = 0 respectively. 
In cases where the Pade approximants to F ( z , ,  0), say, yield highly convergent results 
(as is common in the analysis of power series in critical phenomena), there can be high 
expectations for the CA to F(zl, z2 )  at the point z2 = 0 (the results will not be identical 
in many cases because of the rotation operation in (2)) and therefore one might expect 
reliable results to extend over a range of z2 centred on z2  = 0. A good fit centred on the 
zero of one of the variables is indeed a characteristic feature of the majority of CA cal- 
culated by the authors and is well illustrated by the examples given in table 6 and 
figure 2 for the function xo(K, a)  on the BCC and FCC lattices. 

In this instance the projective property of the CA can be employed to shift the centre 
of the range where a good fit is obtained from the point a = 0 to a = 1. If we rewrite (6) 
in the form 

N 

N N N  i = l  
(7) 

where the initial summation is over equivalent NN and NNN interactions, thus developing 
the power series for xo(K, a’) (a’ = 1 -a), the PA and CA will coincide at the new zero 
a’ = 0 (a = 1) and a good fit can be anticipated to be centred on the point a = 1. This 
shift in the origin of a good fit is illustrated in figure 2 and table 6 where the CA of xo(K, a’) 
(a‘ = 1 -a )  are compared with the CA of xo(K, a). In the case of the BCC lattice the 
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T a k  6. Some Canterbury approximants relating to the functions Xo(a, K) and Xo(a’, K) 
(a  = 1 -a’) for the second-neighbour king model on the BCC and FCC lattices (a = J J J , ) .  

BCC FCC 

a Independent c ~ ( 2 , 2 )  to CA (2.2) to Independent CA (3,2) to CA (3,2) tO 

estimate X O ( K ,  a) xo(K ,  a’) estimate X o ( K  a) x o W ,  a‘) 
of KA4 of K,(a) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.157 
0.145 
0-134 
0.125 
0.117 
0,111 
0.104 
0.099 1 
0.0943 
0.0899 
0.0860 

Kda) ~ 6 4  K A a )  rb) 
0.158 1.26 
0.145 1.26 
0.135 1.26 
0.128 1.27 
0.124t 

0.133t 1.21 
0.104 1.29 
00951 1.26 
0~09oO 1.25 
0.0859 1.25 

0.102 
0.0962 
0.0912 
0.0864 
0.0823 
0.0786 
0.0753 
0.0722 
0.0694 
0.0669 
0.0645 

K&) 
0.102 
0.0962 
0.09 1 2 
0.087 1 
0.0842 
0.082 1 
0.0812t 

Y(a) rb) 
1.26 
1.25 
1.24 
1.24 
1.25 
1.26 0.0744t 
1.27 0.0728 1.24 

0.0709 1.20 
0.0686 1.20 
0.0669 1.21 
0.0640 1.20 

t The approximations either fail or rapidly deteriorate beyond this point. 

I 

0 0.2 0.4 0.6 0.8 
U 

I 

Figure 2. A comparison of the critical points T,(a) obtained from the Canterbury approxi- 
mants to Xo(a, K) and Xo(a’, K) (a  = 1 -a’) and the independent estimates based upon PA 

methods for the second-neighbour Ising model on the BCC and FCC lattices. For the BCC 
lattice 0 and 0 are the CA (2,2) points to Xo(a, K )  and Xo(a’, K) respectively, and x is the 
CA (3,2) to Xo(a‘, K). For the FCC lattice 0 and are the CA (3,2) points to Xo(a, K) and 
Xo(a‘, K )  respectively. 
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CA (3,2) to zo(K,  a') yields superior results to any of the CA to the function zo(K,  a). The 
numerical results clearly support the invariance of 7 to the value of a over the range 
a = 0, 1 (Wilson 1971) ; the CA to xo(a, K) also give a clear indication that y(a) also remains 
constant for the initial negative values; a typical example is the CA (2, 2) for the BCC 
lattice where we obtain 

a = -0.1 -0-2 -0.3 -0.4 
(8) 

y = 1.26 1.26 1.25 1.24. 

Some recent and interesting examples of double power series have arisen from the 
study of Ising models which include three-spin coupling terms in the Hamiltonian 
function. An example of particular interest is the two-dimensional triangular lattice 
with an interaction Hamiltonian in the form 

N 

&' = - 5 2  aioj- J3 c oiojo,-mH 1 oi 
N N  TRI i =  1 

(9) 

(Wood and Grf i ths  l972,1973,1974a, Griffiths and Wood 1973, Watts 1974, Baxter and 
Wu 1974, Baxter 1974, Baxter et a1 1975). In the zero-field case (H  = 0) the exact solution 
for the thermodynamic functions (principally the specific heat) for this model is known at 
the extreme points J 3  = 0 (the conventional Ising model) and 5, = 0 (the pure triplet 
model, Baxter and Wu 1974). The particularly interesting feature of this model is the 
change in the critical exponent a (the specific heat) from a weak logarithmic form (a = 0) 
when J 3  = 0 to a strong branch-point singularity with a = 3 at J2 = 0. The recently 
conjectured solution for the magnetization function of the pure triplet case (Baxter 
et al 1975) yields the critical exponent b = for the pure pair 
case). Hence assuming the scaling theory to remain valid, the susceptibility exponent 
y should change from the value i at J3 = 0 to 2 at J, = 0. The high-temperature poly- 
nomials Pl(a) (a = J 3 / J 2 )  in ( 1 )  have been obtained for the model Hamiltonian (9) 
through to order I = 6 (Wood and Griffiths 1973). A summary of the PA analysis of this 
series is given in table 7 which also includes the CA (2,2) estimates of U, = tanh(J,/kT,) 
for comparison. Such a small number of terms for a model of this type is unlikely to 
yield enough members of PA and CA sequences to draw firm conclusions ; it is therefore 
interesting to see that the qualitative behaviour of the function u,(a) obtained from the 
CA (2,2) is in agreement with the overall PA analysis. In this instance the two schemes PA 
and CA act in a manner which lends qualitative support to each other. The confidence 

(compared with /3 = 

Table 7. A summary of the PA analysis and the CA (2,2)  of the susceptibility function Xo(a, U) 

(a  = J 3 / J z )  for the two-dimensional pair-triplet king model of equation (7) (U = tanh J, /kT) .  

a PA summary 

0, 
0 0.267 f 0.001 t 
0.10 0.261 fO.001 
0.20 0~244f0~001 
0.29 0.223 k0.003 
0.39 0.202 f 0004 
0.50 0~180f0006 

CA (2,  2) 

0, 
0.244 
0.237 
0.223 
0.209 
0.195 
0 1 8 3  

PA summary 

y(a) 
1.70 f 0.05 
1.65 f 0.1 
1.46 f 0.03 
1.26 f 0.1 
1 . 1  f O . 1  
1.0 f0.15 

t The exact value at a = 0 is U, = 2 - J 3  = 0.2679.. . . 
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limits given for the PA estimates of y(a) at fixed values of a are probably exaggerated by 
the small number of PA available. Even allowing for this, a rapid decline in the value of 
?(a) in the region of a = 4 is perhaps suggested by these data. 

4. Summary and conclusions 

The effectiveness of Chisholm’s new rational approximation scheme for functions of two 
variables has been examined for use on difficult problems which arise in the field of 
critical phenomena where the thermodynamic functions are naturally in terms of two 
or more variables. The overall prognosis for such two-variable approximants is good ; 
they are however likely to be restricted in their application to these problems by the 
often much reduced number of terms available in such double power series. This is a 
natural consequence of the added complexity in deriving the power series originally, 
and it is unlikely that they will be as extensively tested and successful as have been the 
now widely used and related Pad6 approximant techniques. 

Even with a restricted number of terms available in the examples included in & 2 and 3 
we have found a case where the CA yield a good representation, and the corresponding 
PA method fails to obtain any physical singularity. This is the susceptibility xo(K, q )  of 
the two-dimensional Heisenberg model lattices for the extreme quantal case s = *. 

At the present time our experience in many CA calculations to two-variable functions 
F ( z , ,  z2) indicates that a good representative fit to F(z , ,  z 2 )  can be expected in a region 
centred on the zero value of either z1 or 2 , ;  this is particularly the case when the PA 
sequences to either F(z , ,  0) or F(0, z2) are rapidly convergent. In cases similar to the 
susceptibility function xo(K, a) of the second-neighbour Ising models ($3)  the centre of 
this ‘good fitting’ region may be translated to an alternative value of z2 by simply 
changing the origin under z; = 1 - z 2  which effectively redefines the perturbation term 
in the Hamiltonian (see (7)). 

In many cases for these problems it is of interest to obtain the qualitative behaviour 
of one critical parameter under the variation of some microscopic interaction parameter. 
The Canterbury approximants are ideally suited for such purposes since they approxi- 
mate directly such functional relationships. An example of such qualitative information 
is very well illustrated by the CA predictions for the behaviour of y(q)  listed in table 3 for 
the three-dimensional anisotropic Heisenberg model lattices. The evidence for the 
invariance of y ( q )  is excellent ; thus in this instance the CA have given new numerical 
support to the universality principle of critical phenomena. 

A secondary purpose of this paper has been to present new evidence for (i) the dis- 
continuous jump in the susceptibility exponent y(q)  at the isotropic limit point q = 1 
and (ii) the existence of a phase transition for the two-dimensional isotropic Heisenberg 
models. The recent series expansions of x o ( K , q , S )  obtained by Wood and Dalton 
(1972) for the general spin Heisenberg model have been examined, and some of the 
results are presented in tables 4 and 5. Both the invariance of y ( q )  in the range 0 < q .= 1 
and the discontinuous jump at q = 1 are supported with surprising precision, which 
places the earlier evidence of Jasnow and Wortis (1968) in support of the universality 
postulate, obtained for the classical Heisenberg limit (s = a), as being undoubtedly 
valid for all the quantal cases. The analysis of these general spin series also lends support 
to the existence of a phase transition in two-dimensional Heisenberg models (q  = 1) 
with a continuous line of critical points over the interval 0 < q < 1 ; also suggested is a 
large increase in y at q = 1. 
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